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We consider the problem of a stationary convective diffusion of a substance, dis- 
solved in an incompressible fluid flow on the surface of a particle moving with 
constant speed in a shear flow field. We assume that the flow over the particle 
is inertia-free and that there is total absorption of the dissolved component on 

its surface. In the diffusing boundary layer approximation we determine the con- 
centration field and obtain expressions for the total diffusing stream of a substance 
on the surface of a solid spherical particle and on the surface of a spherical drop 

(bubble). 

1. The flow field. In a rectangular Cartesian coordinate system fixed to the 
center of a moving spherical particle (drop) the velocity field of an unperturbed (at large 
distances from the particle) translational-shear flow can be written in the form 

v = {% vu, v,} = {-az, -ay, U + 2~x2) (1.1) 

Here U is the speed of the unperturbed translational motion of the fluid, a is the shear 
motion intensity, which may assume both positive and negative values. 
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We assume that the conditions are satisfied for inertia-free (Stokes) flow over the par- 
ticle, i. e. we assume that 

R = Ua/v<l, R, = Ice Ia2/v<1 (1.2) 

(v is the coefficient of kinematic viscosity of the flow, and a is the radius of the par- 
ticle). In the Stokes approximation the distribution of velocities in the fluid in the flow 
of the stream (1.1) over the particle is a superposition of the velocity fields correspond- 

ing to homogeneous translational and homogeneous shear flows over the particle. 
We employ the following expressions to describe the distribution of velocities (see, for 

examp1e, Cl8 2’) ‘II, (r, e> = $rJ (7., e) + qa (7, 0) (1.3) 

q,u(F, 8) == 4 au (F-4(2 

In writing the expressions (1.3) we used a spherical coordinate system, fixed at the par- 
ticle center (drop center), in which the angle 0 is reckoned from the direction of the 
translational flow velocity, and p is the ratio of the dynamic viscosities of the drop and 
of the surrounding fluid (the case of the solid particle corresponds to p + m). In the 

case of the drop we assume, in addition, that the Weber number is sufficiently large (the 
drop remains spherical) and that there are no surface-active substances in the system. 

As an example of a flow of the type (1.1) we cite the instance of the flow field over 

a particle moving in a confuser (diffuser) under conically converging (diverging) stream 
conditions. In actuality, if we neglect the influence of the walls, the flow far from a par- 
ticle, moving with speed UP along the axis of the conical confuser (diffuser), may be de- 

scribed by a superposition of a translational flow with speed -UP and the flow field 
(source field) located at the cone vertex. In the coordinate system fixed to the particle 
center the potential of this flow is given by 

voro2 
~,=-UUprCoSO+- 

rO>lI 

roJI = (r-2 + ro2 - 2rr0 cos O)‘!*, 0 
Do = .2nro2 (1 - COJ r) 

Here ho is the distance from the particle center to the cone vertex, 2 y is the opening 
angle of the walls, and q,,is the fluid outflow rate. Expanding the quantity l/r,, in a 

series in powers of the ratio r I rO and limiting ourselves to second order terms, we ob- 
tain, apart from a nonessential constant, 

9, = (00 - UP) r cos 8 + 5 r2 
3cos2 I3 - 1 

2 

This potential corresponds to the flow field (1.1) if we put v. - UP = U and 2’0 /ho =a. 

2. Pormulatfon of the diffusion problrm. We assume that the fluid 
contains a dissolved substance which is completely absorbed on the surface of the particle. 
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The Schmidt number is large for the majority of liquids, so that, along with the condi- 
tions (1.2) for the Reynolds numbers, the following conditions turn out to be satisfied for 
the F&let numbers (D is the diffusion coefficient): 

P = Ua/D>f, P, = la la/D>1 

Consequently, in determining the diffusion inflow of a substance on the particle surface 
we can use the diffusion boundary layer approximation and write the convective diffu- 

sion equation in the form 
dC v, ac 1 a 

~'ar+,~=D~~ 
( i 

f2 aC 

ar 
(2.1) 

Here c is the concentration and the velocity components v,, vO are determined from 
the relations (1.3). 

Making a change of variables from r, 8 to the variables $, 8, we obtain, instead of 

Eq, (2. l), the equation ac 

Xi= 
- Dsinf3& ~2 $-& (2.2) 

In Eq, (2.2) there appears the product r2@ / dr, which it is necessary to represent in 

the form of a function of 9, 0. In the diffusion boundary layer approximation this pro- 
duct is considered in the region r - a < a. In accord with the relations (1.3) we can 
represent the principal terms in the series expansions of the stream functions I& and $ 

in powers of r - u for the solid particle (P + w) and for the drop (p < P*:s) , re- 
spectively, in the form 

(2.3) ~s=~U(T--)2(1+0,coS0)sinp0, o,=lO$ 

(r - a) (1 + mt cos 0) sin2 8, q=6+ (2.4) 

We wish to emphasize that when p -+ 0 the expression (2.4), and those which follow 

from it, do not yield a limiting passage to the particle case. 
For the determination of the diffusing stream, Eq. (2.2) must be supplemented by boun- 

dary conditions, which, for the case considered, have the form 

*-+*ocJ, c--t co; I# = 0, c = 0; 8 = e,, c = co (2.5) 

Here cO is the concentration of the dissolved substance away from the particle and 8, is the 
angle defining the position of points on the particle surface at which the diffusion bound- 

ary layer originates. 

The first of the conditions (2.5) expresses the constancy of the concentration out- 
side of the diffusion boundary layer, the second corresponds to the assumption of complete 
absorption of the dissolved substance on the particle surface. The third condition is con- 
nected with the use of the diffusion boundary layer approximation and expresses the equa- 
lity of the concentration to the value c!, on stream lines arriving from Infinity and ter- 
minating at points where the boundary layer originates. 

From the form of the stream function (2.3) for the flow over the particle it follows 
that the form of the boundary layer and the angle @, depend on the magnitude and the 
sign of the parameter oscharacterizing the relative intensity of the shear and transla- 
tional motions. Four different types of flow over the particle are possible ; these are 
indicated schematically in Fig. 1, where the cases a to d correspond to the following 
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Fig. 1 

3. Diffusion on I solid particle. 
(2.3) (2.5) can be represented in the form 

values of the parameter asand 
gle 8,: 

475 

the an- 

4 a,<-1, CI,,= 

Similar cases hold for the flow over a 
drop (in the corresponding expressions 

for which the quantity of appears instead 

of the quantity CO,). 

In the general case the problem (2.2) 

ac 
- = y&J (I 9s I”‘$g-J) at (3.1) 

t = t(e,o,) = signY1,Da2(3U~‘/~~sin2rIi +o~cos~T~~~ 

~q+~Dc:,c-+cO; l+o,c=80; t =o,c-CO 

The solution of the problem (3.1) has the form 

c = co($)% ($!xp(-$9”)drli I P I”* 
z = +_ (3.2) 

0 

The expression (3.2) enables us to determine differential and integral fluxes of a sub- 

stance onto the particle surface ; thus, we have 

(3.3) 

We consider individually the four cases indicated above. 

a) 0 G 6h < 1, II, > o, eO = a. For the local diffusion afflux on the par- 

ticle surface we obtain 
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Here F (q / 2, k) and E (cp I 2, k) are elliptic integrals of the first and second kinds. 

For the total flux we obtain from (3,3) with the aid of (3.4) the expression 

I (OS) = I” fo, + 1)‘;s [A (n, p)W, I” = 3na2 j” (3.5) 

b) ws > 1, eO = arccos (-1 / CO,). In this case the diffusion flux distribution 
on the surface of the sphere has different forms on the front (0, < 0 < n)and rear 

(0 < 8 < %I> portions of the sphere. Using the relation 

we obtain 

j(6) = j” 
(2 cL#* sin 0 1 1 + w, cos Cl Iti 

(@s - ‘)“’ [A (n, 9) - A (2 arcsin ( 
e ‘Is 

(3.6) 

q-lcos~ 

q2 = 
0 -1 ;r 
2% 

e,ge<s 

j(e) = j” 
(Zos p sin 8 (i + oS cos 0)“* 

(OS + 1P 
[ 

A (JI, iI_‘) - A (Zarcsirl (psin+), p-l)II;’ 

$p = 2os 
opi’ 0 <e-a, (3.7) 

The total diffusion flux of the substance on the particle surface is equal to 

I (w,) = I” 
(OS + 0’;” 

20, [A (n, p-l)p (3.8) 

Here and henceforth, the values of j”, 1” and the function A (q, k) are determined in 

accord with the relations (3.4) and (3.5). 

c) -_1 < as < 0, t&, = n. For the differential and integral fluxes we obtain 

- j(9) j"(p,) + I)-‘/, sin 0 (1 1 0, 1 cos O)liz 2 logI = 
[.4 (” -- 0, P)l’ia ’ p2 = Io,l$1 (3.9) 

I (OS) = I” (f OS 1 + I)‘/3 L4 fn, p)lQ (3.10) 

d) tiS< -1, e. = z for e,< e < x and e. = 0 for 0 < e< e,, 
8, = arccos (1 ! 1 os I). For the diffusion flux distribution on the front (0, < 8 < 1171) 
and rear (0 \< e< 0,) portions of the sphere we obtain, respectively, 

j (0) = j” 
(2 lo, I)"" sin 0 (I o8 1 cos 8 - I)“* 

(I OS 1 - ip [A (2arcsirl (q-lsin-$) ,qr’ 

(3.11) 
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The total flux on the whole particle is equal to 

1 (@J = 1” 1 (’ rn; ; ; t”” 
[A (n;, (I)]‘/3 + (’ m;; y”’ [A (n, pp 

I 
(3.13) 

8 8 

Of greatest interest in the applications is the value of the total diffusion afflux on the 
particle surface. Using the relations (3.4). (3.5), (3.8). (3.10) and (3.13) we obtain an 
expression for the Sherwood number, defined along a particle radius, in the form 

(3.14) 

7 1 

bh = 50’131’ (43) * i 

(I as I - l)“J 

2 I us I 
B @> + (I 0, I + l)“8 

2, op, B (+)} P”, (3.15) 

I%lW 
B(k) = [ (I - ,‘i,, - k2) K (k) _ 2 k4 -;; + 1 E (k)]“” 

Here K (k) and E (k) are the complete elliptic integrals of the first and second kind, 

respectivelv. The dependence of the quan- 
tity Sh P-‘,” on 1 us 1 is shown in Fig. 2. 

The results obtained here confirm the 

essential influence of the shear flow on the 

0.7 

0.6 

Fig. 2 Fig. 3 

mass transfer. In the special case I or I = 0 the relations (3.4) (3.5) or (3.9). (3.10) 

yield the results obtained in [1] for translational flow over the particle; when ( ws ( + 00 
the relations (3.6) - (3.8) and (3.11) - (3.13) correspond to the results deduced in [3, 
41 for a particle in a homogeneous shear flow. 

4, Dlffurion on a drop (bubbla). We can write the problem (2.2), (2.4) 
(2.5) in the form B” 

(4.1) 

Il&(+co, c---kc,; ~~==O, c=o; t =o, c=co 

Its solution is 
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(4.2) 

Using the expression (4.2) we determine differential and integral diffusion fluxes on the 
drop surface in accord with the expressions (3.3) for the various cases of flow over the 

drop, For the cases (a) and (c) the diffusion flux distribution over the drop surface has 
the form 

j (0) = j” 
(1 - cos 6) (if Of cos 0) 

, j” = co 
DU 

p/3 (2 - case) - l/46+ (1 - cose)*jl’~ 2Jta (P + 1) 1 ‘!t (4 3) 
l 

Integrating the expression (4.3) over the drop surface, we obtain 

(4.4) 

It is evident that the presence of the shear flow has no effect on the total diffusion affIux 

of the substance on the drop surface for 1 of 1 < 1. 
In case (b) the diffusion flux distribution on the front and rear portiohs of the dropsur- 

face is described by the expression 

j(6) = j” 
,=Ja sin2 9 f L 

[l/PC+ (2 - co92 0) - $42 (i - 2Of em 0)]“’ 
(4‘ 5) 

Integrating the expression (4.5) over the whole drop surface, we obtain 

1 = 4nay [ C+lip (Of) + C-‘/z fq)] (4.6) 

In case (d) the diffusion flux distributions on the front and rear portions of the drop 

have, respectively, the forms 

j(O) = j" 
(1 - cos (3) (1 -- 1 Of 1 co9 0) 

[‘is (z- cos 0) + y4 1 wf 1(i -~0~epp 

(4.7) 

e,< @<n, 0, = arccos (1 / ] of 1) 

j (cl) = j” 
(1 + ~0~8) (1~~ ICOS~- I) 

[-- l/3 (a + cos e) +y4 1~0~ ](I + cos epp ' 

o<e<el (4. S) 

Integrating the expressions (4.7) and (4.8) over the front and rear portions of the drop, 
we obtain for the integral flux the result 

1 == 4n$jc [ T&V2 (1 @f 11 + 5_*,; (1 Wfl )I (4.9) 

Of greatest interest in practical applications is the value of the integral flux. Using 
the relations (4.4), (4.6) and (4.9) we obtain for the Sherwood number the results 

Sh = I/g (3 + I)-‘M’“I~, I @f I 6 1 (4.10) 

(4.11) 
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The dependence of the quantity Sh (P + l)‘i* P-‘/s on \ at 1 is shown in Fig. 3. This 
q~nti~remains constants for For / \( 1 and increases as \ of \ increases for 1 Wf / > f . 

In conclusion we note that in the limiting cases of homogeneous transladonal (01 --f 
0) and homogeneous shear (1 cot 1 --t oo) flows the expressions (4.10) and (4,ll)agree 

with those obtained earlier in [ 1, 3, 41. 

The authors thank G. Iu. Stepanov for valuable comments. 
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Systems of integral equations, originating in plane and axisymmetric contact 
problems of elasticity theory in the case of cohesion of a stamp to a body, are 
studied. A method is developed which is based on factorization of matrix func- 
tions of a special kind and its foundation is given. Applications of the method 
in static and dynamic problems are presented. The method is especially effect- 
ive in dynamic contact problems of stamp vibration on the surface of a layered 
medium or a cylinder. 

Other methods of solving contact problems with cohesion have been proposed 

in [l - 8-j. 

1. Systems of integral equations of the following two kinds 

i rmnqn = fm (41 xE:Q, ??a=%,2 (I. I) 
?I=1 

1 T 
r n&n = 2n 

as 
R,,(u) ei”(s-Wuq,, (Q dE, B e [- a, UJ 62) 

-a 0 


